Metamath Proof Explorer


Theorem bj-iminvid

Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024)

Ref Expression
Hypothesis bj-iminvid.ex ( 𝜑𝐴𝑈 )
Assertion bj-iminvid ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 bj-iminvid.ex ( 𝜑𝐴𝑈 )
2 idssxp ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 )
3 2 a1i ( 𝜑 → ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) )
4 1 1 3 bj-iminvval2 ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑥 = ( ( I ↾ 𝐴 ) “ 𝑦 ) ) } )
5 cnvresid ( I ↾ 𝐴 ) = ( I ↾ 𝐴 )
6 5 imaeq1i ( ( I ↾ 𝐴 ) “ 𝑦 ) = ( ( I ↾ 𝐴 ) “ 𝑦 )
7 resiima ( 𝑦𝐴 → ( ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 )
8 6 7 syl5eq ( 𝑦𝐴 → ( ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 )
9 8 adantl ( ( 𝑥𝐴𝑦𝐴 ) → ( ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 )
10 9 eqeq2d ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 = ( ( I ↾ 𝐴 ) “ 𝑦 ) ↔ 𝑥 = 𝑦 ) )
11 10 bj-imdiridlem { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑥 = ( ( I ↾ 𝐴 ) “ 𝑦 ) ) } = ( I ↾ 𝒫 𝐴 )
12 4 11 eqtrdi ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) )