Step |
Hyp |
Ref |
Expression |
1 |
|
bj-iminvid.ex |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
2 |
|
idssxp |
⊢ ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) |
3 |
2
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
4 |
1 1 3
|
bj-iminvval2 |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑥 = ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) ) } ) |
5 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
6 |
5
|
imaeq1i |
⊢ ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) = ( ( I ↾ 𝐴 ) “ 𝑦 ) |
7 |
|
resiima |
⊢ ( 𝑦 ⊆ 𝐴 → ( ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 ) |
8 |
6 7
|
eqtrid |
⊢ ( 𝑦 ⊆ 𝐴 → ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) = 𝑦 ) |
10 |
9
|
eqeq2d |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑥 = ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
11 |
10
|
bj-imdiridlem |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑥 = ( ◡ ( I ↾ 𝐴 ) “ 𝑦 ) ) } = ( I ↾ 𝒫 𝐴 ) |
12 |
4 11
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 𝒫* 𝐴 ) ‘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝒫 𝐴 ) ) |