| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-iminvid.ex | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 2 |  | idssxp | ⊢ (  I   ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐴 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  (  I   ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐴 ) ) | 
						
							| 4 | 1 1 3 | bj-iminvval2 | ⊢ ( 𝜑  →  ( ( 𝐴 𝒫* 𝐴 ) ‘ (  I   ↾  𝐴 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝑥  =  ( ◡ (  I   ↾  𝐴 )  “  𝑦 ) ) } ) | 
						
							| 5 |  | cnvresid | ⊢ ◡ (  I   ↾  𝐴 )  =  (  I   ↾  𝐴 ) | 
						
							| 6 | 5 | imaeq1i | ⊢ ( ◡ (  I   ↾  𝐴 )  “  𝑦 )  =  ( (  I   ↾  𝐴 )  “  𝑦 ) | 
						
							| 7 |  | resiima | ⊢ ( 𝑦  ⊆  𝐴  →  ( (  I   ↾  𝐴 )  “  𝑦 )  =  𝑦 ) | 
						
							| 8 | 6 7 | eqtrid | ⊢ ( 𝑦  ⊆  𝐴  →  ( ◡ (  I   ↾  𝐴 )  “  𝑦 )  =  𝑦 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  →  ( ◡ (  I   ↾  𝐴 )  “  𝑦 )  =  𝑦 ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  →  ( 𝑥  =  ( ◡ (  I   ↾  𝐴 )  “  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 11 | 10 | bj-imdiridlem | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑦  ⊆  𝐴 )  ∧  𝑥  =  ( ◡ (  I   ↾  𝐴 )  “  𝑦 ) ) }  =  (  I   ↾  𝒫  𝐴 ) | 
						
							| 12 | 4 11 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐴 𝒫* 𝐴 ) ‘ (  I   ↾  𝐴 ) )  =  (  I   ↾  𝒫  𝐴 ) ) |