Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Direct image and inverse image
bj-iminvval2
Next ⟩
bj-iminvid
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-iminvval2
Description:
Value of the functionalized inverse image.
(Contributed by
BJ
, 23-May-2024)
Ref
Expression
Hypotheses
bj-iminvval2.exa
⊢
φ
→
A
∈
U
bj-iminvval2.exb
⊢
φ
→
B
∈
V
bj-iminvval2.arg
⊢
φ
→
R
⊆
A
×
B
Assertion
bj-iminvval2
⊢
φ
→
A
𝒫
*
B
⁡
R
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
R
-1
y
Proof
Step
Hyp
Ref
Expression
1
bj-iminvval2.exa
⊢
φ
→
A
∈
U
2
bj-iminvval2.exb
⊢
φ
→
B
∈
V
3
bj-iminvval2.arg
⊢
φ
→
R
⊆
A
×
B
4
1
2
bj-iminvval
⊢
φ
→
A
𝒫
*
B
=
r
∈
𝒫
A
×
B
⟼
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
r
-1
y
5
simpr
⊢
φ
∧
r
=
R
→
r
=
R
6
5
cnveqd
⊢
φ
∧
r
=
R
→
r
-1
=
R
-1
7
6
imaeq1d
⊢
φ
∧
r
=
R
→
r
-1
y
=
R
-1
y
8
7
eqeq2d
⊢
φ
∧
r
=
R
→
x
=
r
-1
y
↔
x
=
R
-1
y
9
8
anbi2d
⊢
φ
∧
r
=
R
→
x
⊆
A
∧
y
⊆
B
∧
x
=
r
-1
y
↔
x
⊆
A
∧
y
⊆
B
∧
x
=
R
-1
y
10
9
opabbidv
⊢
φ
∧
r
=
R
→
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
r
-1
y
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
R
-1
y
11
1
2
xpexd
⊢
φ
→
A
×
B
∈
V
12
11
3
sselpwd
⊢
φ
→
R
∈
𝒫
A
×
B
13
1
2
bj-imdirval2lem
⊢
φ
→
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
R
-1
y
∈
V
14
4
10
12
13
fvmptd
⊢
φ
→
A
𝒫
*
B
⁡
R
=
x
y
|
x
⊆
A
∧
y
⊆
B
∧
x
=
R
-1
y