Metamath Proof Explorer


Theorem bj-iminvval

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval.1 φ A U
bj-iminvval.2 φ B V
Assertion bj-iminvval Could not format assertion : No typesetting found for |- ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-iminvval.1 φ A U
2 bj-iminvval.2 φ B V
3 df-iminv Could not format ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) : No typesetting found for |- ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) with typecode |-
4 1 2 3 bj-imdirvallem Could not format ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) : No typesetting found for |- ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) with typecode |-