Metamath Proof Explorer


Theorem bj-iminvval

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval.1 φ A U
bj-iminvval.2 φ B V
Assertion bj-iminvval φ A 𝒫 * B = r 𝒫 A × B x y | x A y B x = r -1 y

Proof

Step Hyp Ref Expression
1 bj-iminvval.1 φ A U
2 bj-iminvval.2 φ B V
3 df-iminv 𝒫 * = a V , b V r 𝒫 a × b x y | x a y b x = r -1 y
4 1 2 3 bj-imdirvallem φ A 𝒫 * B = r 𝒫 A × B x y | x A y B x = r -1 y