Metamath Proof Explorer


Definition df-iminv

Description: Definition of the functionalized inverse image, which maps a binary relation between two given sets to its associated inverse image relation. (Contributed by BJ, 23-Dec-2023)

Ref Expression
Assertion df-iminv Could not format assertion : No typesetting found for |- ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciminv Could not format ~P^* : No typesetting found for class ~P^* with typecode class
1 va setvara
2 cvv classV
3 vb setvarb
4 vr setvarr
5 1 cv setvara
6 3 cv setvarb
7 5 6 cxp classa×b
8 7 cpw class𝒫a×b
9 vx setvarx
10 vy setvary
11 9 cv setvarx
12 11 5 wss wffxa
13 10 cv setvary
14 13 6 wss wffyb
15 12 14 wa wffxayb
16 4 cv setvarr
17 16 ccnv classr-1
18 17 13 cima classr-1y
19 11 18 wceq wffx=r-1y
20 15 19 wa wffxaybx=r-1y
21 20 9 10 copab classxy|xaybx=r-1y
22 4 8 21 cmpt classr𝒫a×bxy|xaybx=r-1y
23 1 3 2 2 22 cmpo classaV,bVr𝒫a×bxy|xaybx=r-1y
24 0 23 wceq Could not format ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) : No typesetting found for wff ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) with typecode wff