| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ciminv |
⊢ 𝒫* |
| 1 |
|
va |
⊢ 𝑎 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vb |
⊢ 𝑏 |
| 4 |
|
vr |
⊢ 𝑟 |
| 5 |
1
|
cv |
⊢ 𝑎 |
| 6 |
3
|
cv |
⊢ 𝑏 |
| 7 |
5 6
|
cxp |
⊢ ( 𝑎 × 𝑏 ) |
| 8 |
7
|
cpw |
⊢ 𝒫 ( 𝑎 × 𝑏 ) |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
|
vy |
⊢ 𝑦 |
| 11 |
9
|
cv |
⊢ 𝑥 |
| 12 |
11 5
|
wss |
⊢ 𝑥 ⊆ 𝑎 |
| 13 |
10
|
cv |
⊢ 𝑦 |
| 14 |
13 6
|
wss |
⊢ 𝑦 ⊆ 𝑏 |
| 15 |
12 14
|
wa |
⊢ ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) |
| 16 |
4
|
cv |
⊢ 𝑟 |
| 17 |
16
|
ccnv |
⊢ ◡ 𝑟 |
| 18 |
17 13
|
cima |
⊢ ( ◡ 𝑟 “ 𝑦 ) |
| 19 |
11 18
|
wceq |
⊢ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) |
| 20 |
15 19
|
wa |
⊢ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) |
| 21 |
20 9 10
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } |
| 22 |
4 8 21
|
cmpt |
⊢ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } ) |
| 23 |
1 3 2 2 22
|
cmpo |
⊢ ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } ) ) |
| 24 |
0 23
|
wceq |
⊢ 𝒫* = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ 𝑥 = ( ◡ 𝑟 “ 𝑦 ) ) } ) ) |