Metamath Proof Explorer


Definition df-iminv

Description: Definition of the functionalized inverse image, which maps a binary relation between two given sets to its associated inverse image relation. (Contributed by BJ, 23-Dec-2023)

Ref Expression
Assertion df-iminv
|- ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciminv
 |-  ~P^*
1 va
 |-  a
2 cvv
 |-  _V
3 vb
 |-  b
4 vr
 |-  r
5 1 cv
 |-  a
6 3 cv
 |-  b
7 5 6 cxp
 |-  ( a X. b )
8 7 cpw
 |-  ~P ( a X. b )
9 vx
 |-  x
10 vy
 |-  y
11 9 cv
 |-  x
12 11 5 wss
 |-  x C_ a
13 10 cv
 |-  y
14 13 6 wss
 |-  y C_ b
15 12 14 wa
 |-  ( x C_ a /\ y C_ b )
16 4 cv
 |-  r
17 16 ccnv
 |-  `' r
18 17 13 cima
 |-  ( `' r " y )
19 11 18 wceq
 |-  x = ( `' r " y )
20 15 19 wa
 |-  ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) )
21 20 9 10 copab
 |-  { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) }
22 4 8 21 cmpt
 |-  ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } )
23 1 3 2 2 22 cmpo
 |-  ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) )
24 0 23 wceq
 |-  ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) )