| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ciminv |
|- ~P^* |
| 1 |
|
va |
|- a |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vb |
|- b |
| 4 |
|
vr |
|- r |
| 5 |
1
|
cv |
|- a |
| 6 |
3
|
cv |
|- b |
| 7 |
5 6
|
cxp |
|- ( a X. b ) |
| 8 |
7
|
cpw |
|- ~P ( a X. b ) |
| 9 |
|
vx |
|- x |
| 10 |
|
vy |
|- y |
| 11 |
9
|
cv |
|- x |
| 12 |
11 5
|
wss |
|- x C_ a |
| 13 |
10
|
cv |
|- y |
| 14 |
13 6
|
wss |
|- y C_ b |
| 15 |
12 14
|
wa |
|- ( x C_ a /\ y C_ b ) |
| 16 |
4
|
cv |
|- r |
| 17 |
16
|
ccnv |
|- `' r |
| 18 |
17 13
|
cima |
|- ( `' r " y ) |
| 19 |
11 18
|
wceq |
|- x = ( `' r " y ) |
| 20 |
15 19
|
wa |
|- ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) |
| 21 |
20 9 10
|
copab |
|- { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } |
| 22 |
4 8 21
|
cmpt |
|- ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) |
| 23 |
1 3 2 2 22
|
cmpo |
|- ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) |
| 24 |
0 23
|
wceq |
|- ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) |