Step |
Hyp |
Ref |
Expression |
0 |
|
ciminv |
|- ~P^* |
1 |
|
va |
|- a |
2 |
|
cvv |
|- _V |
3 |
|
vb |
|- b |
4 |
|
vr |
|- r |
5 |
1
|
cv |
|- a |
6 |
3
|
cv |
|- b |
7 |
5 6
|
cxp |
|- ( a X. b ) |
8 |
7
|
cpw |
|- ~P ( a X. b ) |
9 |
|
vx |
|- x |
10 |
|
vy |
|- y |
11 |
9
|
cv |
|- x |
12 |
11 5
|
wss |
|- x C_ a |
13 |
10
|
cv |
|- y |
14 |
13 6
|
wss |
|- y C_ b |
15 |
12 14
|
wa |
|- ( x C_ a /\ y C_ b ) |
16 |
4
|
cv |
|- r |
17 |
16
|
ccnv |
|- `' r |
18 |
17 13
|
cima |
|- ( `' r " y ) |
19 |
11 18
|
wceq |
|- x = ( `' r " y ) |
20 |
15 19
|
wa |
|- ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) |
21 |
20 9 10
|
copab |
|- { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } |
22 |
4 8 21
|
cmpt |
|- ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) |
23 |
1 3 2 2 22
|
cmpo |
|- ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) |
24 |
0 23
|
wceq |
|- ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) |