| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ciminv |  |-  ~P^* | 
						
							| 1 |  | va |  |-  a | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vb |  |-  b | 
						
							| 4 |  | vr |  |-  r | 
						
							| 5 | 1 | cv |  |-  a | 
						
							| 6 | 3 | cv |  |-  b | 
						
							| 7 | 5 6 | cxp |  |-  ( a X. b ) | 
						
							| 8 | 7 | cpw |  |-  ~P ( a X. b ) | 
						
							| 9 |  | vx |  |-  x | 
						
							| 10 |  | vy |  |-  y | 
						
							| 11 | 9 | cv |  |-  x | 
						
							| 12 | 11 5 | wss |  |-  x C_ a | 
						
							| 13 | 10 | cv |  |-  y | 
						
							| 14 | 13 6 | wss |  |-  y C_ b | 
						
							| 15 | 12 14 | wa |  |-  ( x C_ a /\ y C_ b ) | 
						
							| 16 | 4 | cv |  |-  r | 
						
							| 17 | 16 | ccnv |  |-  `' r | 
						
							| 18 | 17 13 | cima |  |-  ( `' r " y ) | 
						
							| 19 | 11 18 | wceq |  |-  x = ( `' r " y ) | 
						
							| 20 | 15 19 | wa |  |-  ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) | 
						
							| 21 | 20 9 10 | copab |  |-  { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } | 
						
							| 22 | 4 8 21 | cmpt |  |-  ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) | 
						
							| 23 | 1 3 2 2 22 | cmpo |  |-  ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) | 
						
							| 24 | 0 23 | wceq |  |-  ~P^* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ x = ( `' r " y ) ) } ) ) |