Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirvallem.1 |
|- ( ph -> A e. U ) |
2 |
|
bj-imdirvallem.2 |
|- ( ph -> B e. V ) |
3 |
|
bj-imdirvallem.df |
|- C = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ps ) } ) ) |
4 |
3
|
a1i |
|- ( ph -> C = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ps ) } ) ) ) |
5 |
|
xpeq12 |
|- ( ( a = A /\ b = B ) -> ( a X. b ) = ( A X. B ) ) |
6 |
5
|
pweqd |
|- ( ( a = A /\ b = B ) -> ~P ( a X. b ) = ~P ( A X. B ) ) |
7 |
6
|
adantl |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> ~P ( a X. b ) = ~P ( A X. B ) ) |
8 |
|
sseq2 |
|- ( a = A -> ( x C_ a <-> x C_ A ) ) |
9 |
|
sseq2 |
|- ( b = B -> ( y C_ b <-> y C_ B ) ) |
10 |
8 9
|
bi2anan9 |
|- ( ( a = A /\ b = B ) -> ( ( x C_ a /\ y C_ b ) <-> ( x C_ A /\ y C_ B ) ) ) |
11 |
10
|
anbi1d |
|- ( ( a = A /\ b = B ) -> ( ( ( x C_ a /\ y C_ b ) /\ ps ) <-> ( ( x C_ A /\ y C_ B ) /\ ps ) ) ) |
12 |
11
|
opabbidv |
|- ( ( a = A /\ b = B ) -> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ps ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } ) |
13 |
12
|
adantl |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ps ) } = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } ) |
14 |
7 13
|
mpteq12dv |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ps ) } ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } ) ) |
15 |
1
|
elexd |
|- ( ph -> A e. _V ) |
16 |
2
|
elexd |
|- ( ph -> B e. _V ) |
17 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
18 |
17
|
pwexd |
|- ( ph -> ~P ( A X. B ) e. _V ) |
19 |
18
|
mptexd |
|- ( ph -> ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } ) e. _V ) |
20 |
4 14 15 16 19
|
ovmpod |
|- ( ph -> ( A C B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ps ) } ) ) |