| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cimdir | ⊢ 𝒫* | 
						
							| 1 |  | va | ⊢ 𝑎 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vb | ⊢ 𝑏 | 
						
							| 4 |  | vr | ⊢ 𝑟 | 
						
							| 5 | 1 | cv | ⊢ 𝑎 | 
						
							| 6 | 3 | cv | ⊢ 𝑏 | 
						
							| 7 | 5 6 | cxp | ⊢ ( 𝑎  ×  𝑏 ) | 
						
							| 8 | 7 | cpw | ⊢ 𝒫  ( 𝑎  ×  𝑏 ) | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 |  | vy | ⊢ 𝑦 | 
						
							| 11 | 9 | cv | ⊢ 𝑥 | 
						
							| 12 | 11 5 | wss | ⊢ 𝑥  ⊆  𝑎 | 
						
							| 13 | 10 | cv | ⊢ 𝑦 | 
						
							| 14 | 13 6 | wss | ⊢ 𝑦  ⊆  𝑏 | 
						
							| 15 | 12 14 | wa | ⊢ ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 ) | 
						
							| 16 | 4 | cv | ⊢ 𝑟 | 
						
							| 17 | 16 11 | cima | ⊢ ( 𝑟  “  𝑥 ) | 
						
							| 18 | 17 13 | wceq | ⊢ ( 𝑟  “  𝑥 )  =  𝑦 | 
						
							| 19 | 15 18 | wa | ⊢ ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  ( 𝑟  “  𝑥 )  =  𝑦 ) | 
						
							| 20 | 19 9 10 | copab | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  ( 𝑟  “  𝑥 )  =  𝑦 ) } | 
						
							| 21 | 4 8 20 | cmpt | ⊢ ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  ( 𝑟  “  𝑥 )  =  𝑦 ) } ) | 
						
							| 22 | 1 3 2 2 21 | cmpo | ⊢ ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  ( 𝑟  “  𝑥 )  =  𝑦 ) } ) ) | 
						
							| 23 | 0 22 | wceq | ⊢ 𝒫*  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ⊆  𝑎  ∧  𝑦  ⊆  𝑏 )  ∧  ( 𝑟  “  𝑥 )  =  𝑦 ) } ) ) |