Step |
Hyp |
Ref |
Expression |
0 |
|
cimdir |
⊢ 𝒫* |
1 |
|
va |
⊢ 𝑎 |
2 |
|
cvv |
⊢ V |
3 |
|
vb |
⊢ 𝑏 |
4 |
|
vr |
⊢ 𝑟 |
5 |
1
|
cv |
⊢ 𝑎 |
6 |
3
|
cv |
⊢ 𝑏 |
7 |
5 6
|
cxp |
⊢ ( 𝑎 × 𝑏 ) |
8 |
7
|
cpw |
⊢ 𝒫 ( 𝑎 × 𝑏 ) |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
vy |
⊢ 𝑦 |
11 |
9
|
cv |
⊢ 𝑥 |
12 |
11 5
|
wss |
⊢ 𝑥 ⊆ 𝑎 |
13 |
10
|
cv |
⊢ 𝑦 |
14 |
13 6
|
wss |
⊢ 𝑦 ⊆ 𝑏 |
15 |
12 14
|
wa |
⊢ ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) |
16 |
4
|
cv |
⊢ 𝑟 |
17 |
16 11
|
cima |
⊢ ( 𝑟 “ 𝑥 ) |
18 |
17 13
|
wceq |
⊢ ( 𝑟 “ 𝑥 ) = 𝑦 |
19 |
15 18
|
wa |
⊢ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) |
20 |
19 9 10
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } |
21 |
4 8 20
|
cmpt |
⊢ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } ) |
22 |
1 3 2 2 21
|
cmpo |
⊢ ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } ) ) |
23 |
0 22
|
wceq |
⊢ 𝒫* = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏 ) ∧ ( 𝑟 “ 𝑥 ) = 𝑦 ) } ) ) |