Metamath Proof Explorer


Definition df-imdir

Description: Definition of the functionalized direct image, which maps a binary relation between two given sets to its associated direct image relation. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Assertion df-imdir Could not format assertion : No typesetting found for |- ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimdir Could not format ~P_* : No typesetting found for class ~P_* with typecode class
1 va setvara
2 cvv classV
3 vb setvarb
4 vr setvarr
5 1 cv setvara
6 3 cv setvarb
7 5 6 cxp classa×b
8 7 cpw class𝒫a×b
9 vx setvarx
10 vy setvary
11 9 cv setvarx
12 11 5 wss wffxa
13 10 cv setvary
14 13 6 wss wffyb
15 12 14 wa wffxayb
16 4 cv setvarr
17 16 11 cima classrx
18 17 13 wceq wffrx=y
19 15 18 wa wffxaybrx=y
20 19 9 10 copab classxy|xaybrx=y
21 4 8 20 cmpt classr𝒫a×bxy|xaybrx=y
22 1 3 2 2 21 cmpo classaV,bVr𝒫a×bxy|xaybrx=y
23 0 22 wceq Could not format ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) : No typesetting found for wff ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) with typecode wff