Metamath Proof Explorer


Definition df-imdir

Description: Definition of the functionalized direct image, which maps a binary relation between two given sets to its associated direct image relation. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Assertion df-imdir Could not format assertion : No typesetting found for |- ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimdir Could not format ~P_* : No typesetting found for class ~P_* with typecode class
1 va setvar a
2 cvv class V
3 vb setvar b
4 vr setvar r
5 1 cv setvar a
6 3 cv setvar b
7 5 6 cxp class a × b
8 7 cpw class 𝒫 a × b
9 vx setvar x
10 vy setvar y
11 9 cv setvar x
12 11 5 wss wff x a
13 10 cv setvar y
14 13 6 wss wff y b
15 12 14 wa wff x a y b
16 4 cv setvar r
17 16 11 cima class r x
18 17 13 wceq wff r x = y
19 15 18 wa wff x a y b r x = y
20 19 9 10 copab class x y | x a y b r x = y
21 4 8 20 cmpt class r 𝒫 a × b x y | x a y b r x = y
22 1 3 2 2 21 cmpo class a V , b V r 𝒫 a × b x y | x a y b r x = y
23 0 22 wceq Could not format ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) : No typesetting found for wff ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) ) with typecode wff