Metamath Proof Explorer


Definition df-imdir

Description: Definition of the functionalized direct image, which maps a binary relation between two given sets to its associated direct image relation. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Assertion df-imdir
|- ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimdir
 |-  ~P_*
1 va
 |-  a
2 cvv
 |-  _V
3 vb
 |-  b
4 vr
 |-  r
5 1 cv
 |-  a
6 3 cv
 |-  b
7 5 6 cxp
 |-  ( a X. b )
8 7 cpw
 |-  ~P ( a X. b )
9 vx
 |-  x
10 vy
 |-  y
11 9 cv
 |-  x
12 11 5 wss
 |-  x C_ a
13 10 cv
 |-  y
14 13 6 wss
 |-  y C_ b
15 12 14 wa
 |-  ( x C_ a /\ y C_ b )
16 4 cv
 |-  r
17 16 11 cima
 |-  ( r " x )
18 17 13 wceq
 |-  ( r " x ) = y
19 15 18 wa
 |-  ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y )
20 19 9 10 copab
 |-  { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) }
21 4 8 20 cmpt
 |-  ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } )
22 1 3 2 2 21 cmpo
 |-  ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) )
23 0 22 wceq
 |-  ~P_* = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> { <. x , y >. | ( ( x C_ a /\ y C_ b ) /\ ( r " x ) = y ) } ) )