Metamath Proof Explorer


Theorem bj-mptval

Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020)

Ref Expression
Hypothesis bj-mptval.nf _ x A
Assertion bj-mptval x A B V X A x A B X = Y X x A B Y

Proof

Step Hyp Ref Expression
1 bj-mptval.nf _ x A
2 1 fnmptf x A B V x A B Fn A
3 fnbrfvb x A B Fn A X A x A B X = Y X x A B Y
4 3 ex x A B Fn A X A x A B X = Y X x A B Y
5 2 4 syl x A B V X A x A B X = Y X x A B Y