Metamath Proof Explorer


Theorem bj-mptval

Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020)

Ref Expression
Hypothesis bj-mptval.nf _xA
Assertion bj-mptval xABVXAxABX=YXxABY

Proof

Step Hyp Ref Expression
1 bj-mptval.nf _xA
2 1 fnmptf xABVxABFnA
3 fnbrfvb xABFnAXAxABX=YXxABY
4 3 ex xABFnAXAxABX=YXxABY
5 2 4 syl xABVXAxABX=YXxABY