Metamath Proof Explorer


Theorem bj-nnfext

Description: See nfex and bj-nfext . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfext xℲ'yφℲ'yxφ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ'yφyφφφyφ
2 1 albii xℲ'yφxyφφφyφ
3 simpl yφφφyφyφφ
4 3 alimi xyφφφyφxyφφ
5 bj-nnflemee xyφφyxφxφ
6 4 5 syl xyφφφyφyxφxφ
7 2 6 sylbi xℲ'yφyxφxφ
8 simpr yφφφyφφyφ
9 8 alimi xyφφφyφxφyφ
10 bj-nnflemae xφyφxφyxφ
11 9 10 syl xyφφφyφxφyxφ
12 2 11 sylbi xℲ'yφxφyxφ
13 df-bj-nnf Ⅎ'yxφyxφxφxφyxφ
14 7 12 13 sylanbrc xℲ'yφℲ'yxφ