| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bj-nnf |
⊢ ( Ⅎ' 𝑦 𝜑 ↔ ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) ) |
| 2 |
1
|
albii |
⊢ ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ↔ ∀ 𝑥 ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) ) |
| 3 |
|
simpl |
⊢ ( ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑦 𝜑 → 𝜑 ) ) |
| 4 |
3
|
alimi |
⊢ ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜑 ) ) |
| 5 |
|
bj-nnflemee |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜑 ) → ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) ) |
| 7 |
2 6
|
sylbi |
⊢ ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) ) |
| 8 |
|
simpr |
⊢ ( ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( 𝜑 → ∀ 𝑦 𝜑 ) ) |
| 9 |
8
|
alimi |
⊢ ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) |
| 10 |
|
bj-nnflemae |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 12 |
2 11
|
sylbi |
⊢ ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 13 |
|
df-bj-nnf |
⊢ ( Ⅎ' 𝑦 ∃ 𝑥 𝜑 ↔ ( ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) ∧ ( ∃ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 14 |
7 12 13
|
sylanbrc |
⊢ ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → Ⅎ' 𝑦 ∃ 𝑥 𝜑 ) |