Metamath Proof Explorer


Theorem bj-nnfext

Description: See nfex and bj-nfext . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfext ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → Ⅎ' 𝑦𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-bj-nnf ( Ⅎ' 𝑦 𝜑 ↔ ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) )
2 1 albii ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ↔ ∀ 𝑥 ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) )
3 simpl ( ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑦 𝜑𝜑 ) )
4 3 alimi ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ∀ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) )
5 bj-nnflemee ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) )
6 4 5 syl ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) )
7 2 6 sylbi ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) )
8 simpr ( ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( 𝜑 → ∀ 𝑦 𝜑 ) )
9 8 alimi ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) )
10 bj-nnflemae ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
11 9 10 syl ( ∀ 𝑥 ( ( ∃ 𝑦 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∃ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
12 2 11 sylbi ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
13 df-bj-nnf ( Ⅎ' 𝑦𝑥 𝜑 ↔ ( ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) ∧ ( ∃ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) ) )
14 7 12 13 sylanbrc ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → Ⅎ' 𝑦𝑥 𝜑 )