Metamath Proof Explorer


Theorem bj-nnfim2

Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim2 Ⅎ'xφℲ'xψxφxψφψ

Proof

Step Hyp Ref Expression
1 bj-nnfa Ⅎ'xφφxφ
2 bj-nnfe Ⅎ'xψxψψ
3 imim12 φxφxψψxφxψφψ
4 3 imp φxφxψψxφxψφψ
5 1 2 4 syl2an Ⅎ'xφℲ'xψxφxψφψ