Metamath Proof Explorer


Theorem bj-opabssvv

Description: A variant of relopabiv (which could be proved from it, similarly to relxp from xpss ). (Contributed by BJ, 28-Dec-2023)

Ref Expression
Assertion bj-opabssvv x y | φ V × V

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 pm3.2i x V y V
4 3 a1i φ x V y V
5 4 ssopab2i x y | φ x y | x V y V
6 df-xp V × V = x y | x V y V
7 5 6 sseqtrri x y | φ V × V