Description: A variant of relopabiv (which could be proved from it, similarly to relxp from xpss ). (Contributed by BJ, 28-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-opabssvv | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ ( V × V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ⊢ 𝑥 ∈ V | |
2 | vex | ⊢ 𝑦 ∈ V | |
3 | 1 2 | pm3.2i | ⊢ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) |
4 | 3 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) |
5 | 4 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } |
6 | df-xp | ⊢ ( V × V ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } | |
7 | 5 6 | sseqtrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ ( V × V ) |