Metamath Proof Explorer


Theorem bj-opabssvv

Description: A variant of relopabiv (which could be proved from it, similarly to relxp from xpss ). (Contributed by BJ, 28-Dec-2023)

Ref Expression
Assertion bj-opabssvv { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ ( V × V )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 vex 𝑦 ∈ V
3 1 2 pm3.2i ( 𝑥 ∈ V ∧ 𝑦 ∈ V )
4 3 a1i ( 𝜑 → ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) )
5 4 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) }
6 df-xp ( V × V ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) }
7 5 6 sseqtrri { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ ( V × V )