Description: A variant of relopabiv (which could be proved from it, similarly to relxp from xpss ). (Contributed by BJ, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-opabssvv | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ ( V × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | pm3.2i | ⊢ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) |
| 5 | 4 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } |
| 6 | df-xp | ⊢ ( V × V ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } | |
| 7 | 5 6 | sseqtrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ⊆ ( V × V ) |