Metamath Proof Explorer


Theorem bj-opabssvv

Description: A variant of relopabiv (which could be proved from it, similarly to relxp from xpss ). (Contributed by BJ, 28-Dec-2023)

Ref Expression
Assertion bj-opabssvv
|- { <. x , y >. | ph } C_ ( _V X. _V )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 vex
 |-  y e. _V
3 1 2 pm3.2i
 |-  ( x e. _V /\ y e. _V )
4 3 a1i
 |-  ( ph -> ( x e. _V /\ y e. _V ) )
5 4 ssopab2i
 |-  { <. x , y >. | ph } C_ { <. x , y >. | ( x e. _V /\ y e. _V ) }
6 df-xp
 |-  ( _V X. _V ) = { <. x , y >. | ( x e. _V /\ y e. _V ) }
7 5 6 sseqtrri
 |-  { <. x , y >. | ph } C_ ( _V X. _V )