Metamath Proof Explorer


Theorem bj-peircecurry

Description: Peirce's axiom peirce implies Curry's axiom curryax over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the introduction axioms olc and orc ; the elimination axiom jao is not needed). See bj-currypeirce for the converse. (Contributed by BJ, 15-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-peircecurry φ φ ψ

Proof

Step Hyp Ref Expression
1 orc φ φ φ ψ
2 olc φ ψ φ φ ψ
3 peirce φ φ ψ φ φ φ ψ φ φ ψ
4 peirce φ ψ φ φ
5 peirceroll φ ψ φ φ φ ψ φ φ ψ φ φ ψ φ φ
6 4 5 ax-mp φ ψ φ φ ψ φ φ ψ φ φ
7 peirceroll φ φ ψ φ φ φ ψ φ φ ψ φ φ ψ φ φ φ φ φ ψ φ φ ψ
8 3 6 7 mpsyl φ ψ φ φ ψ φ φ φ ψ φ φ ψ
9 2 8 ax-mp φ φ φ ψ φ φ ψ
10 1 9 ax-mp φ φ ψ