Metamath Proof Explorer


Theorem bj-peircecurry

Description: Peirce's axiom peirce implies Curry's axiom curryax over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the introduction axioms olc and orc ; the elimination axiom jao is not needed). See bj-currypeirce for the converse. (Contributed by BJ, 15-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-peircecurry ( 𝜑 ∨ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜑 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )
2 olc ( ( 𝜑𝜓 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )
3 peirce ( ( ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )
4 peirce ( ( ( 𝜑𝜓 ) → 𝜑 ) → 𝜑 )
5 peirceroll ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( 𝜑𝜓 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 ) → 𝜑 ) ) )
6 4 5 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 ) → 𝜑 ) )
7 peirceroll ( ( ( ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) ) )
8 3 6 7 mpsyl ( ( ( 𝜑𝜓 ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) )
9 2 8 ax-mp ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )
10 1 9 ax-mp ( 𝜑 ∨ ( 𝜑𝜓 ) )