Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
⊢ ( 𝜑 → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) |
2 |
|
olc |
⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) |
3 |
|
peirce |
⊢ ( ( ( ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) → 𝜑 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) |
4 |
|
peirce |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) |
5 |
|
peirceroll |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( ( ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) → 𝜑 ) → 𝜑 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( ( ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) → 𝜑 ) → 𝜑 ) ) |
7 |
|
peirceroll |
⊢ ( ( ( ( ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) → 𝜑 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) ) ) |
8 |
3 6 7
|
mpsyl |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) ) |
9 |
2 8
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) ) |
10 |
1 9
|
ax-mp |
⊢ ( 𝜑 ∨ ( 𝜑 → 𝜓 ) ) |