Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
First-order logic: miscellaneous
bj-sbievw1
Next ⟩
bj-sbievw2
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-sbievw1
Description:
Lemma for substitution.
(Contributed by
BJ
, 23-Jul-2023)
Ref
Expression
Assertion
bj-sbievw1
⊢
y
x
φ
→
ψ
→
y
x
φ
→
ψ
Proof
Step
Hyp
Ref
Expression
1
sb6
⊢
y
x
φ
→
ψ
↔
∀
x
x
=
y
→
φ
→
ψ
2
bj-sblem1
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∀
x
x
=
y
→
φ
→
∃
x
x
=
y
→
ψ
3
sb6
⊢
y
x
φ
↔
∀
x
x
=
y
→
φ
4
ax6ev
⊢
∃
x
x
=
y
5
4
a1bi
⊢
ψ
↔
∃
x
x
=
y
→
ψ
6
2
3
5
3imtr4g
⊢
∀
x
x
=
y
→
φ
→
ψ
→
y
x
φ
→
ψ
7
1
6
sylbi
⊢
y
x
φ
→
ψ
→
y
x
φ
→
ψ