Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
First-order logic: miscellaneous
bj-sbievw2
Next ⟩
bj-sbievw
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-sbievw2
Description:
Lemma for substitution.
(Contributed by
BJ
, 23-Jul-2023)
Ref
Expression
Assertion
bj-sbievw2
⊢
y
x
ψ
→
φ
→
ψ
→
y
x
φ
Proof
Step
Hyp
Ref
Expression
1
sb6
⊢
y
x
ψ
→
φ
↔
∀
x
x
=
y
→
ψ
→
φ
2
bj-sblem2
⊢
∀
x
x
=
y
→
ψ
→
φ
→
∃
x
x
=
y
→
ψ
→
∀
x
x
=
y
→
φ
3
jarr
⊢
∃
x
x
=
y
→
ψ
→
∀
x
x
=
y
→
φ
→
ψ
→
∀
x
x
=
y
→
φ
4
sb6
⊢
y
x
φ
↔
∀
x
x
=
y
→
φ
5
3
4
syl6ibr
⊢
∃
x
x
=
y
→
ψ
→
∀
x
x
=
y
→
φ
→
ψ
→
y
x
φ
6
2
5
syl
⊢
∀
x
x
=
y
→
ψ
→
φ
→
ψ
→
y
x
φ
7
1
6
sylbi
⊢
y
x
ψ
→
φ
→
ψ
→
y
x
φ