| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sb6 |
|- ( [ y / x ] ( ps -> ph ) <-> A. x ( x = y -> ( ps -> ph ) ) ) |
| 2 |
|
bj-sblem2 |
|- ( A. x ( x = y -> ( ps -> ph ) ) -> ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) ) |
| 3 |
|
jarr |
|- ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> A. x ( x = y -> ph ) ) ) |
| 4 |
|
sb6 |
|- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
| 5 |
3 4
|
imbitrrdi |
|- ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> [ y / x ] ph ) ) |
| 6 |
2 5
|
syl |
|- ( A. x ( x = y -> ( ps -> ph ) ) -> ( ps -> [ y / x ] ph ) ) |
| 7 |
1 6
|
sylbi |
|- ( [ y / x ] ( ps -> ph ) -> ( ps -> [ y / x ] ph ) ) |