Metamath Proof Explorer


Theorem bj-sbievw2

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sbievw2
|- ( [ y / x ] ( ps -> ph ) -> ( ps -> [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 sb6
 |-  ( [ y / x ] ( ps -> ph ) <-> A. x ( x = y -> ( ps -> ph ) ) )
2 bj-sblem2
 |-  ( A. x ( x = y -> ( ps -> ph ) ) -> ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) )
3 jarr
 |-  ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> A. x ( x = y -> ph ) ) )
4 sb6
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
5 3 4 syl6ibr
 |-  ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> [ y / x ] ph ) )
6 2 5 syl
 |-  ( A. x ( x = y -> ( ps -> ph ) ) -> ( ps -> [ y / x ] ph ) )
7 1 6 sylbi
 |-  ( [ y / x ] ( ps -> ph ) -> ( ps -> [ y / x ] ph ) )