| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sb6 |  |-  ( [ y / x ] ( ps -> ph ) <-> A. x ( x = y -> ( ps -> ph ) ) ) | 
						
							| 2 |  | bj-sblem2 |  |-  ( A. x ( x = y -> ( ps -> ph ) ) -> ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) ) | 
						
							| 3 |  | jarr |  |-  ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> A. x ( x = y -> ph ) ) ) | 
						
							| 4 |  | sb6 |  |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) | 
						
							| 5 | 3 4 | imbitrrdi |  |-  ( ( ( E. x x = y -> ps ) -> A. x ( x = y -> ph ) ) -> ( ps -> [ y / x ] ph ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( A. x ( x = y -> ( ps -> ph ) ) -> ( ps -> [ y / x ] ph ) ) | 
						
							| 7 | 1 6 | sylbi |  |-  ( [ y / x ] ( ps -> ph ) -> ( ps -> [ y / x ] ph ) ) |