Metamath Proof Explorer


Theorem bj-sbievw2

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sbievw2 ( [ 𝑦 / 𝑥 ] ( 𝜓𝜑 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sb6 ( [ 𝑦 / 𝑥 ] ( 𝜓𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) ) )
2 bj-sblem2 ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) ) → ( ( ∃ 𝑥 𝑥 = 𝑦𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
3 jarr ( ( ( ∃ 𝑥 𝑥 = 𝑦𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
4 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
5 3 4 syl6ibr ( ( ( ∃ 𝑥 𝑥 = 𝑦𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) )
6 2 5 syl ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) )
7 1 6 sylbi ( [ 𝑦 / 𝑥 ] ( 𝜓𝜑 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) )