| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sb6 | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜓  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 2 |  | bj-sblem2 | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝜓  →  𝜑 ) )  →  ( ( ∃ 𝑥 𝑥  =  𝑦  →  𝜓 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 3 |  | jarr | ⊢ ( ( ( ∃ 𝑥 𝑥  =  𝑦  →  𝜓 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 4 |  | sb6 | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 5 | 3 4 | imbitrrdi | ⊢ ( ( ( ∃ 𝑥 𝑥  =  𝑦  →  𝜓 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) )  →  ( 𝜓  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  ( 𝜓  →  𝜑 ) )  →  ( 𝜓  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 7 | 1 6 | sylbi | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜓  →  𝜑 )  →  ( 𝜓  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) |