Step |
Hyp |
Ref |
Expression |
1 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) ) |
2 |
|
bj-sblem2 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) → ( ( ∃ 𝑥 𝑥 = 𝑦 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
3 |
|
jarr |
⊢ ( ( ( ∃ 𝑥 𝑥 = 𝑦 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
4 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
5 |
3 4
|
syl6ibr |
⊢ ( ( ( ∃ 𝑥 𝑥 = 𝑦 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
2 5
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
7 |
1 6
|
sylbi |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |