Metamath Proof Explorer


Theorem bj-sbievw1

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sbievw1
|- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> ps ) )

Proof

Step Hyp Ref Expression
1 sb6
 |-  ( [ y / x ] ( ph -> ps ) <-> A. x ( x = y -> ( ph -> ps ) ) )
2 bj-sblem1
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ( x = y -> ph ) -> ( E. x x = y -> ps ) ) )
3 sb6
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
4 ax6ev
 |-  E. x x = y
5 4 a1bi
 |-  ( ps <-> ( E. x x = y -> ps ) )
6 2 3 5 3imtr4g
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( [ y / x ] ph -> ps ) )
7 1 6 sylbi
 |-  ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> ps ) )