Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sblem1 | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ( ph -> ps ) -> ( E. x ph -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-2 | |- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
|
2 | 1 | al2imi | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ( ph -> ps ) -> A. x ( ph -> ch ) ) ) |
3 | 19.23v | |- ( A. x ( ph -> ch ) <-> ( E. x ph -> ch ) ) |
|
4 | 2 3 | syl6ib | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ( ph -> ps ) -> ( E. x ph -> ch ) ) ) |