Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sblem1 | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-2 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) | |
2 | 1 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜒 ) ) ) |
3 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) | |
4 | 2 3 | syl6ib | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) |