Metamath Proof Explorer


Theorem bj-sblem1

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sblem1 ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ax-2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 1 al2imi ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜒 ) ) )
3 19.23v ( ∀ 𝑥 ( 𝜑𝜒 ) ↔ ( ∃ 𝑥 𝜑𝜒 ) )
4 2 3 syl6ib ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑𝜒 ) ) )