Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sblem1 | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-2 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) | |
| 2 | 1 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜒 ) ) ) | 
| 3 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) | |
| 4 | 2 3 | imbitrdi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) |