Metamath Proof Explorer


Theorem bj-smgrpssmgm

Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-smgrpssmgm Smgrp Mgm

Proof

Step Hyp Ref Expression
1 df-sgrp Smgrp = g Mgm | [˙Base g / b]˙ [˙+ g / p]˙ x b y b z b x p y p z = x p y p z
2 1 ssrab3 Smgrp Mgm