Metamath Proof Explorer


Theorem bj-smgrpssmgm

Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-smgrpssmgm Smgrp ⊆ Mgm

Proof

Step Hyp Ref Expression
1 df-sgrp Smgrp = { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( ( 𝑥 𝑝 𝑦 ) 𝑝 𝑧 ) = ( 𝑥 𝑝 ( 𝑦 𝑝 𝑧 ) ) }
2 1 ssrab3 Smgrp ⊆ Mgm