Metamath Proof Explorer


Theorem bj-ssbid1ALT

Description: Alternate proof of bj-ssbid1 , not using sbequ1 . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ssbid1ALT φ x x φ

Proof

Step Hyp Ref Expression
1 ax12v x = y φ x x = y φ
2 1 equcoms y = x φ x x = y φ
3 2 com12 φ y = x x x = y φ
4 3 alrimiv φ y y = x x x = y φ
5 df-sb x x φ y y = x x x = y φ
6 4 5 sylibr φ x x φ