Metamath Proof Explorer


Theorem bj-ssbid1ALT

Description: Alternate proof of bj-ssbid1 , not using sbequ1 . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ssbid1ALT φxxφ

Proof

Step Hyp Ref Expression
1 ax12v x=yφxx=yφ
2 1 equcoms y=xφxx=yφ
3 2 com12 φy=xxx=yφ
4 3 alrimiv φyy=xxx=yφ
5 df-sb xxφyy=xxx=yφ
6 4 5 sylibr φxxφ