Metamath Proof Explorer


Theorem bj-substw

Description: Weak form of the LHS of bj-substax12 proved from the core axiom schemes. Compare ax12w . (Contributed by BJ, 26-May-2024) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-substw.is x=tφψ
Assertion bj-substw xx=tφxx=tφ

Proof

Step Hyp Ref Expression
1 bj-substw.is x=tφψ
2 1 pm5.32i x=tφx=tψ
3 2 exbii xx=tφxx=tψ
4 19.41v xx=tψxx=tψ
5 3 4 bitri xx=tφxx=tψ
6 1 biimprcd ψx=tφ
7 6 alrimiv ψxx=tφ
8 5 7 simplbiim xx=tφxx=tφ