Metamath Proof Explorer


Theorem bj-syl66ib

Description: A mixed syllogism inference derived from syl6ib . In addition to bj-dvelimdv1 , it can also shorten alexsubALTlem4 (4821>4812), supsrlem (2868>2863). (Contributed by BJ, 20-Oct-2021)

Ref Expression
Hypotheses bj-syl66ib.1 φ ψ θ
bj-syl66ib.2 θ τ
bj-syl66ib.3 τ χ
Assertion bj-syl66ib φ ψ χ

Proof

Step Hyp Ref Expression
1 bj-syl66ib.1 φ ψ θ
2 bj-syl66ib.2 θ τ
3 bj-syl66ib.3 τ χ
4 1 2 syl6 φ ψ τ
5 4 3 syl6ib φ ψ χ