Metamath Proof Explorer


Theorem bj-syl66ib

Description: A mixed syllogism inference derived from syl6ib . In addition to bj-dvelimdv1 , it can also shorten alexsubALTlem4 (4821>4812), supsrlem (2868>2863). (Contributed by BJ, 20-Oct-2021)

Ref Expression
Hypotheses bj-syl66ib.1 ( 𝜑 → ( 𝜓𝜃 ) )
bj-syl66ib.2 ( 𝜃𝜏 )
bj-syl66ib.3 ( 𝜏𝜒 )
Assertion bj-syl66ib ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-syl66ib.1 ( 𝜑 → ( 𝜓𝜃 ) )
2 bj-syl66ib.2 ( 𝜃𝜏 )
3 bj-syl66ib.3 ( 𝜏𝜒 )
4 1 2 syl6 ( 𝜑 → ( 𝜓𝜏 ) )
5 4 3 syl6ib ( 𝜑 → ( 𝜓𝜒 ) )