Metamath Proof Explorer


Theorem bj-dvelimdv1

Description: Curried (exported) form of bj-dvelimdv (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-dvelimdv.nf ( 𝜑 → Ⅎ 𝑥 𝜒 )
bj-dvelimdv.is ( 𝑧 = 𝑦 → ( 𝜒𝜓 ) )
Assertion bj-dvelimdv1 ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-dvelimdv.nf ( 𝜑 → Ⅎ 𝑥 𝜒 )
2 bj-dvelimdv.is ( 𝑧 = 𝑦 → ( 𝜒𝜓 ) )
3 nfeqf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 )
4 bj-nfimt ( Ⅎ 𝑥 𝑧 = 𝑦 → ( Ⅎ 𝑥 𝜒 → Ⅎ 𝑥 ( 𝑧 = 𝑦𝜒 ) ) )
5 3 1 4 syl2imc ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑧 = 𝑦𝜒 ) ) )
6 5 alrimdv ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧𝑥 ( 𝑧 = 𝑦𝜒 ) ) )
7 bj-nfalt ( ∀ 𝑧𝑥 ( 𝑧 = 𝑦𝜒 ) → Ⅎ 𝑥𝑧 ( 𝑧 = 𝑦𝜒 ) )
8 2 equsalvw ( ∀ 𝑧 ( 𝑧 = 𝑦𝜒 ) ↔ 𝜓 )
9 8 nfbii ( Ⅎ 𝑥𝑧 ( 𝑧 = 𝑦𝜒 ) ↔ Ⅎ 𝑥 𝜓 )
10 6 7 9 bj-syl66ib ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) )