| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-dvelimdv.nf |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
| 2 |
|
bj-dvelimdv.is |
⊢ ( 𝑧 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) |
| 3 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 4 |
|
bj-nfimt |
⊢ ( Ⅎ 𝑥 𝑧 = 𝑦 → ( Ⅎ 𝑥 𝜒 → Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜒 ) ) ) |
| 5 |
3 1 4
|
syl2imc |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜒 ) ) ) |
| 6 |
5
|
alrimdv |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜒 ) ) ) |
| 7 |
|
bj-nfalt |
⊢ ( ∀ 𝑧 Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜒 ) → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜒 ) ) |
| 8 |
2
|
equsalvw |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜒 ) ↔ 𝜓 ) |
| 9 |
8
|
nfbii |
⊢ ( Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜒 ) ↔ Ⅎ 𝑥 𝜓 ) |
| 10 |
6 7 9
|
bj-syl66ib |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) ) |