| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.35 |
⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 2 |
|
id |
⊢ ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) |
| 3 |
2
|
nfrd |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 4 |
3
|
imim1d |
⊢ ( Ⅎ 𝑥 𝜑 → ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) ) |
| 5 |
1 4
|
biimtrid |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) ) |
| 6 |
|
id |
⊢ ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 𝜓 ) |
| 7 |
6
|
nfrd |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) |
| 8 |
7
|
imim2d |
⊢ ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) |
| 9 |
|
19.38 |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 10 |
8 9
|
syl6 |
⊢ ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 11 |
5 10
|
syl9 |
⊢ ( Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) |
| 12 |
|
df-nf |
⊢ ( Ⅎ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 13 |
11 12
|
imbitrrdi |
⊢ ( Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 ( 𝜑 → 𝜓 ) ) ) |