Metamath Proof Explorer


Theorem bj-nfimt

Description: Closed form of nfim and curried (exported) form of nfimt . (Contributed by BJ, 20-Oct-2021)

Ref Expression
Assertion bj-nfimt ( Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 id ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 )
3 2 nfrd ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
4 3 imim1d ( Ⅎ 𝑥 𝜑 → ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) )
5 1 4 syl5bi ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) )
6 id ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 𝜓 )
7 6 nfrd ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
8 7 imim2d ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
9 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
10 8 9 syl6 ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
11 5 10 syl9 ( Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) ) )
12 df-nf ( Ⅎ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
13 11 12 syl6ibr ( Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 ( 𝜑𝜓 ) ) )