| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 𝜒 → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 2 |
1
|
al2imi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑦 ∃ 𝑥 𝜒 → ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 3 |
|
pm2.27 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| 4 |
3
|
aleximi |
⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ∃ 𝑥 𝜓 ) ) |
| 5 |
4
|
com12 |
⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 6 |
5
|
alimi |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 7 |
|
alim |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜓 ) ) |
| 8 |
|
alim |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑦 ∃ 𝑥 𝜓 → ∀ 𝑦 𝜓 ) ) |
| 9 |
|
imim1 |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜓 ) → ( ( ∀ 𝑦 ∃ 𝑥 𝜓 → ∀ 𝑦 𝜓 ) → ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
| 10 |
|
imim2 |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
| 11 |
8 9 10
|
syl56 |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜓 ) → ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) ) |
| 12 |
11
|
com23 |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑦 ∃ 𝑥 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) ) |
| 13 |
6 7 12
|
3syl |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) ) |
| 14 |
2 13
|
syl6com |
⊢ ( ∀ 𝑦 ∃ 𝑥 𝜒 → ( ∀ 𝑦 ∀ 𝑥 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) ) ) |