Step |
Hyp |
Ref |
Expression |
1 |
|
bj-dvelimdv.nf |
|- ( ph -> F/ x ch ) |
2 |
|
bj-dvelimdv.is |
|- ( z = y -> ( ch <-> ps ) ) |
3 |
|
nfeqf2 |
|- ( -. A. x x = y -> F/ x z = y ) |
4 |
|
bj-nfimt |
|- ( F/ x z = y -> ( F/ x ch -> F/ x ( z = y -> ch ) ) ) |
5 |
3 1 4
|
syl2imc |
|- ( ph -> ( -. A. x x = y -> F/ x ( z = y -> ch ) ) ) |
6 |
5
|
alrimdv |
|- ( ph -> ( -. A. x x = y -> A. z F/ x ( z = y -> ch ) ) ) |
7 |
|
bj-nfalt |
|- ( A. z F/ x ( z = y -> ch ) -> F/ x A. z ( z = y -> ch ) ) |
8 |
2
|
equsalvw |
|- ( A. z ( z = y -> ch ) <-> ps ) |
9 |
8
|
nfbii |
|- ( F/ x A. z ( z = y -> ch ) <-> F/ x ps ) |
10 |
6 7 9
|
bj-syl66ib |
|- ( ph -> ( -. A. x x = y -> F/ x ps ) ) |