Metamath Proof Explorer


Theorem bj-dvelimdv1

Description: Curried (exported) form of bj-dvelimdv (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-dvelimdv.nf
|- ( ph -> F/ x ch )
bj-dvelimdv.is
|- ( z = y -> ( ch <-> ps ) )
Assertion bj-dvelimdv1
|- ( ph -> ( -. A. x x = y -> F/ x ps ) )

Proof

Step Hyp Ref Expression
1 bj-dvelimdv.nf
 |-  ( ph -> F/ x ch )
2 bj-dvelimdv.is
 |-  ( z = y -> ( ch <-> ps ) )
3 nfeqf2
 |-  ( -. A. x x = y -> F/ x z = y )
4 bj-nfimt
 |-  ( F/ x z = y -> ( F/ x ch -> F/ x ( z = y -> ch ) ) )
5 3 1 4 syl2imc
 |-  ( ph -> ( -. A. x x = y -> F/ x ( z = y -> ch ) ) )
6 5 alrimdv
 |-  ( ph -> ( -. A. x x = y -> A. z F/ x ( z = y -> ch ) ) )
7 bj-nfalt
 |-  ( A. z F/ x ( z = y -> ch ) -> F/ x A. z ( z = y -> ch ) )
8 2 equsalvw
 |-  ( A. z ( z = y -> ch ) <-> ps )
9 8 nfbii
 |-  ( F/ x A. z ( z = y -> ch ) <-> F/ x ps )
10 6 7 9 bj-syl66ib
 |-  ( ph -> ( -. A. x x = y -> F/ x ps ) )