Metamath Proof Explorer


Theorem bj-dvelimdv1

Description: Curried (exported) form of bj-dvelimdv (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-dvelimdv.nf φ x χ
bj-dvelimdv.is z = y χ ψ
Assertion bj-dvelimdv1 φ ¬ x x = y x ψ

Proof

Step Hyp Ref Expression
1 bj-dvelimdv.nf φ x χ
2 bj-dvelimdv.is z = y χ ψ
3 nfeqf2 ¬ x x = y x z = y
4 bj-nfimt x z = y x χ x z = y χ
5 3 1 4 syl2imc φ ¬ x x = y x z = y χ
6 5 alrimdv φ ¬ x x = y z x z = y χ
7 bj-nfalt z x z = y χ x z z = y χ
8 2 equsalvw z z = y χ ψ
9 8 nfbii x z z = y χ x ψ
10 6 7 9 bj-syl66ib φ ¬ x x = y x ψ