Metamath Proof Explorer
		
		
		
		Description:  A version of dvelim using the "nonfree" idiom.  (Contributed by BJ, 20-Oct-2021)  (Proof modification is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | bj-dvelimv.nf | ⊢ Ⅎ 𝑥 𝜓 | 
					
						|  |  | bj-dvelimv.is | ⊢ ( 𝑧  =  𝑦  →  ( 𝜓  ↔  𝜑 ) ) | 
				
					|  | Assertion | bj-dvelimv | ⊢  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-dvelimv.nf | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 2 |  | bj-dvelimv.is | ⊢ ( 𝑧  =  𝑦  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 3 | 1 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 4 | 3 2 | bj-dvelimdv1 | ⊢ ( ⊤  →  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝜑 ) ) | 
						
							| 5 | 4 | mptru | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝜑 ) |