Metamath Proof Explorer


Theorem bj-dvelimv

Description: A version of dvelim using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-dvelimv.nf 𝑥 𝜓
bj-dvelimv.is ( 𝑧 = 𝑦 → ( 𝜓𝜑 ) )
Assertion bj-dvelimv ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-dvelimv.nf 𝑥 𝜓
2 bj-dvelimv.is ( 𝑧 = 𝑦 → ( 𝜓𝜑 ) )
3 1 a1i ( ⊤ → Ⅎ 𝑥 𝜓 )
4 3 2 bj-dvelimdv1 ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) )
5 4 mptru ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 )