Metamath Proof Explorer
Description: A version of dvelim using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bj-dvelimv.nf |
⊢ Ⅎ 𝑥 𝜓 |
|
|
bj-dvelimv.is |
⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
|
Assertion |
bj-dvelimv |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-dvelimv.nf |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
bj-dvelimv.is |
⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
3 |
1
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝜓 ) |
4 |
3 2
|
bj-dvelimdv1 |
⊢ ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) ) |
5 |
4
|
mptru |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) |