Description: Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfeel2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | ⊢ Ⅎ 𝑥 𝑡 ∈ 𝑧 | |
2 | elequ1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
3 | 1 2 | bj-dvelimv | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |