Description: Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-nfeel2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 𝑡 ∈ 𝑧 | |
| 2 | elequ1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 3 | 1 2 | bj-dvelimv | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |