Description: Proof of a version of axc14 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axc14nf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfeel2 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ∈ 𝑡 ) | |
2 | elequ2 | ⊢ ( 𝑡 = 𝑦 → ( 𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦 ) ) | |
3 | 1 2 | bj-dvelimdv1 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) ) |