Description: Proof of a version of axc14 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axc14nf | |- ( -. A. z z = x -> ( -. A. z z = y -> F/ z x e. y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfeel2 | |- ( -. A. z z = x -> F/ z x e. t ) |
|
2 | elequ2 | |- ( t = y -> ( x e. t <-> x e. y ) ) |
|
3 | 1 2 | bj-dvelimdv1 | |- ( -. A. z z = x -> ( -. A. z z = y -> F/ z x e. y ) ) |