Description: Alternate proof of axc14 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-axc14 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-axc14nf | |- ( -. A. z z = x -> ( -. A. z z = y -> F/ z x e. y ) ) |
|
| 2 | nf5r | |- ( F/ z x e. y -> ( x e. y -> A. z x e. y ) ) |
|
| 3 | 2 | a1i | |- ( -. A. z z = x -> ( F/ z x e. y -> ( x e. y -> A. z x e. y ) ) ) |
| 4 | 1 3 | syld | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |