Description: Alternate proof of axc14 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axc14 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-axc14nf | |- ( -. A. z z = x -> ( -. A. z z = y -> F/ z x e. y ) ) |
|
2 | nf5r | |- ( F/ z x e. y -> ( x e. y -> A. z x e. y ) ) |
|
3 | 2 | a1i | |- ( -. A. z z = x -> ( F/ z x e. y -> ( x e. y -> A. z x e. y ) ) ) |
4 | 1 3 | syld | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |