Metamath Proof Explorer


Theorem mobidvALT

Description: Alternate proof of mobidv directly from its analogues albidv and exbidv , using deduction style. Note the proof structure, similar to mobi . (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 , ax-7 , ax-12 by adapting proof of mobid . (Revised by BJ, 26-Sep-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mobidvALT.1
|- ( ph -> ( ps <-> ch ) )
Assertion mobidvALT
|- ( ph -> ( E* x ps <-> E* x ch ) )

Proof

Step Hyp Ref Expression
1 mobidvALT.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 imbi1d
 |-  ( ph -> ( ( ps -> x = y ) <-> ( ch -> x = y ) ) )
3 2 albidv
 |-  ( ph -> ( A. x ( ps -> x = y ) <-> A. x ( ch -> x = y ) ) )
4 3 exbidv
 |-  ( ph -> ( E. y A. x ( ps -> x = y ) <-> E. y A. x ( ch -> x = y ) ) )
5 df-mo
 |-  ( E* x ps <-> E. y A. x ( ps -> x = y ) )
6 df-mo
 |-  ( E* x ch <-> E. y A. x ( ch -> x = y ) )
7 4 5 6 3bitr4g
 |-  ( ph -> ( E* x ps <-> E* x ch ) )