Metamath Proof Explorer


Theorem mobidvALT

Description: Alternate proof of mobidv directly from its analogues albidv and exbidv , using deduction style. Note the proof structure, similar to mobi . (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 , ax-7 , ax-12 by adapting proof of mobid . (Revised by BJ, 26-Sep-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mobidvALT.1 φ ψ χ
Assertion mobidvALT φ * x ψ * x χ

Proof

Step Hyp Ref Expression
1 mobidvALT.1 φ ψ χ
2 1 imbi1d φ ψ x = y χ x = y
3 2 albidv φ x ψ x = y x χ x = y
4 3 exbidv φ y x ψ x = y y x χ x = y
5 df-mo * x ψ y x ψ x = y
6 df-mo * x χ y x χ x = y
7 4 5 6 3bitr4g φ * x ψ * x χ