Metamath Proof Explorer


Theorem sbn1ALT

Description: Alternate proof of sbn1 , not using the false constant. (Contributed by BJ, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbn1ALT t x ¬ φ ¬ t x φ

Proof

Step Hyp Ref Expression
1 nsb x ¬ φ ¬ φ ¬ t x φ ¬ φ
2 pm3.24 ¬ φ ¬ φ
3 1 2 mpg ¬ t x φ ¬ φ
4 sban t x φ ¬ φ t x φ t x ¬ φ
5 3 4 mtbi ¬ t x φ t x ¬ φ
6 pm3.21 t x ¬ φ t x φ t x φ t x ¬ φ
7 5 6 mtoi t x ¬ φ ¬ t x φ