Metamath Proof Explorer


Theorem sbn1ALT

Description: Alternate proof of sbn1 , not using the false constant. (Contributed by BJ, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbn1ALT ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 nsb ( ∀ 𝑥 ¬ ( 𝜑 ∧ ¬ 𝜑 ) → ¬ [ 𝑡 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜑 ) )
2 pm3.24 ¬ ( 𝜑 ∧ ¬ 𝜑 )
3 1 2 mpg ¬ [ 𝑡 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜑 )
4 sban ( [ 𝑡 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜑 ) ↔ ( [ 𝑡 / 𝑥 ] 𝜑 ∧ [ 𝑡 / 𝑥 ] ¬ 𝜑 ) )
5 3 4 mtbi ¬ ( [ 𝑡 / 𝑥 ] 𝜑 ∧ [ 𝑡 / 𝑥 ] ¬ 𝜑 )
6 pm3.21 ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑 ∧ [ 𝑡 / 𝑥 ] ¬ 𝜑 ) ) )
7 5 6 mtoi ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 )