Metamath Proof Explorer


Theorem sbn1ALT

Description: Alternate proof of sbn1 , not using the false constant. (Contributed by BJ, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbn1ALT
|- ( [ t / x ] -. ph -> -. [ t / x ] ph )

Proof

Step Hyp Ref Expression
1 nsb
 |-  ( A. x -. ( ph /\ -. ph ) -> -. [ t / x ] ( ph /\ -. ph ) )
2 pm3.24
 |-  -. ( ph /\ -. ph )
3 1 2 mpg
 |-  -. [ t / x ] ( ph /\ -. ph )
4 sban
 |-  ( [ t / x ] ( ph /\ -. ph ) <-> ( [ t / x ] ph /\ [ t / x ] -. ph ) )
5 3 4 mtbi
 |-  -. ( [ t / x ] ph /\ [ t / x ] -. ph )
6 pm3.21
 |-  ( [ t / x ] -. ph -> ( [ t / x ] ph -> ( [ t / x ] ph /\ [ t / x ] -. ph ) ) )
7 5 6 mtoi
 |-  ( [ t / x ] -. ph -> -. [ t / x ] ph )