Metamath Proof Explorer
Description: One direction of sbn , using fewer axioms. Compare 19.2 .
(Contributed by Steven Nguyen, 18-Aug-2023)
|
|
Ref |
Expression |
|
Assertion |
sbn1 |
⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsb |
⊢ ( ∀ 𝑥 ¬ ⊥ → ¬ [ 𝑡 / 𝑥 ] ⊥ ) |
| 2 |
|
fal |
⊢ ¬ ⊥ |
| 3 |
1 2
|
mpg |
⊢ ¬ [ 𝑡 / 𝑥 ] ⊥ |
| 4 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) |
| 5 |
4
|
sb2imi |
⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] ⊥ ) ) |
| 6 |
3 5
|
mtoi |
⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |